Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 193: 129-143, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918678

RESUMO

Nanoparticle albumin bound™ (nab™) technology is an established delivery platform for development of albumin stabilized nanoparticles as drug delivery systems for poorly water-soluble drugs. By using albumin for particle stabilization, nab™ technology does not require solubilizers or emulsifiers for the formulation of poorly water-soluble drugs for intravenous use. Despite the great potential, however, to date only two products based on nab™ technology have been approved by the Food and Drug Administration: Abraxane® (nab™ paclitaxel) and Fyarro® (nab™ rapamycin). In this study, the commercially available product Abraxane® was characterized in comparison to an albumin stabilized nanosuspension for the poorly water-soluble drug itraconazole. The aim of this study was to identify critical product parameters of the nanosuspensions depending on the manufacturing process in order to assess the transferability of nab™ technology to other drugs. The colloidal properties, stabilizing protein composition and particle disintegration behavior were analyzed. In addition, studies were carried out on the impact of the key process step, the high-pressure homogenization, using a design of experiments (DoE) approach. A nanosuspension comprising spherical, stable drug nanoparticles stabilized by a large fraction of dissolved albumin around the nanoparticles were identified. During the manufacturing process, the drug core was coated with a layer of albumin, which was cross-linked to a certain level. The Abraxane® and itraconazole suspensions differed in the analyzed protein fraction, with stronger cross-linking at the particle surface for Abraxane®. Both active pharmaceutical ingredients were present in the amorphous state as nanoparticles. In vitro disintegration studies performed to mimic a strong dilution during intravenous application showed the disintegration of the nanoparticles. All in all, the analysis underlined the transferability of the nab™ technology to selected other poorly water-soluble drugs with the great advantage of eliminating solubilizers and emulsifiers for intravenous applications.


Assuntos
Itraconazol , Nanopartículas , Paclitaxel Ligado a Albumina , Solubilidade , Albuminas , Excipientes , Água , Tamanho da Partícula , Suspensões
2.
Int J Pharm ; 646: 123454, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37776966

RESUMO

Even though current drug discovery provides a variety of potential drug candidates, many of those substances are difficult to formulate due to their poor water-solubility. To overcome this obstacle a technological formulation is crucial. Albumin-based nanocarriers are a possible intravenous delivery system which is already approved and commercially available. However, no universal carrier for poorly water-soluble substances is found yet. In the present study, new preparation processes for nanocapsules consisting of a medium-chain triglyceride (MCT) core and a human serum albumin (HSA) shell were developed. The nanocarrier system exhibits desirable physicochemical properties with a hydrodynamic diameter of 150 nm and a polydispersity index of 0.1. Furthermore, the nanocapsules were stable towards the addition of electrolytes and also in basic to neutral pH range. The nanocapsules were storage stable for at least 7 months at 4 °C and could also be lyophilized to reach an even longer shelf life of at least 21 months. In addition, the nanocapsule system showed no cytotoxicity in cell culture. The developed system represents a suitable carrier for a variety of different poorly water-soluble drug substances (e.g., fenofibrate, naproxen, indomethacin) showing a high potential for a universal formulation platform for further lipophilic active pharmaceutical ingredients (APIs).

3.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37511614

RESUMO

Proliferating cell nuclear antigen (PCNA) is the key regulator of human DNA metabolism. One important interaction partner is p15, involved in DNA replication and repair. Targeting the PCNA-p15 interaction is a promising therapeutic strategy against cancer. Here, a Förster resonance energy transfer (FRET)-based assay for the analysis of the PCNA-p15 interaction was developed. Next to the application as screening tool for the identification and characterization of PCNA-p15 interaction inhibitors, the assay is also suitable for the investigation of mutation-induced changes in their affinity. This is particularly useful for analyzing disease associated PCNA or p15 variants at the molecular level. Recently, the PCNA variant C148S has been associated with Ataxia-telangiectasia-like disorder type 2 (ATLD2). ATLD2 is a neurodegenerative disease based on defects in DNA repair due to an impaired PCNA. Incubation time dependent FRET measurements indicated no effect on PCNAC148S-p15 affinity, but on PCNA stability. The impaired stability and increased aggregation behavior of PCNAC148S was confirmed by intrinsic tryptophan fluorescence, differential scanning fluorimetry (DSF) and asymmetrical flow field-flow fractionation (AF4) measurements. The analysis of the disease associated PCNA variant demonstrated the versatility of the interaction assay as developed.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Doenças Neurodegenerativas , Humanos , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Replicação do DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...